Полупроводники
чистые (без примесей)
Если полупроводник чистый( без примесей), то он обладает собственной проводимостью, которая невелика?
Собственная проводимость бывает двух видов:
2) дырочная ( проводимость " p" - типа )
При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном - "дырка".
Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.
Перемещение дырки происходит в направлении вектора напряженности электрического поля.
Полупроводники при наличии примесей
У них существует собственная + примесная проводимость
Наличие примесей сильно увеличивает проводимость.
При изменении концентрации примесей изменяется число носителей эл.тока - электронов и дырок.
Возможность управления током лежит в основе широкого применения полупроводников.
Существуют:
2) акцепторные примеси ( принимающие )
Создают "дырки" , забирая в себя электроны.
Это полупроводники " p "- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда - дырки, а неосновной - электроны.
Такой полупроводник обладает дырочной примесной проводимостью.
Внешнее электрическое поле влияет на
сопротивление запирающего слоя.
При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников.
Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.
Если полупроводник чистый( без примесей), то он обладает собственной проводимостью, которая невелика?
Собственная проводимость бывает двух видов:
1)
электронная (
проводимость "n " - типа)
При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны - сопротивление уменьшается.
Свободные электроны перемещаются противоположно вектору напряженности эл.поля.
Электронная проводимость полупроводников обусловлена наличием свободных электронов.
При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны - сопротивление уменьшается.
Свободные электроны перемещаются противоположно вектору напряженности эл.поля.
Электронная проводимость полупроводников обусловлена наличием свободных электронов.
2) дырочная ( проводимость " p" - типа )
При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном - "дырка".
Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.
Перемещение дырки происходит в направлении вектора напряженности электрического поля.
Кроме
нагревания , разрыв ковалентных связей и возникновение собственной проводимости
полупроводников могут быть вызваны освещением ( фотопроводимость ) и действием
сильных электрических полей.
Общая проводимость
чистого полупроводника складывается из проводимостей "p" и
"n" -типов
и называется электронно-дырочной проводимостью.
и называется электронно-дырочной проводимостью.
Полупроводники при наличии примесей
У них существует собственная + примесная проводимость
Наличие примесей сильно увеличивает проводимость.
При изменении концентрации примесей изменяется число носителей эл.тока - электронов и дырок.
Возможность управления током лежит в основе широкого применения полупроводников.
Существуют:
1)
донорные примеси ( отдающие )
Являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.
Это проводники " n " - типа, т.е. полупроводники с донорными примесями, где основной носитель заряда - электроны, а неосновной - дырки.
Такой полупроводник обладает электронной примесной проводимостью.
Являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.
Это проводники " n " - типа, т.е. полупроводники с донорными примесями, где основной носитель заряда - электроны, а неосновной - дырки.
Такой полупроводник обладает электронной примесной проводимостью.
2) акцепторные примеси ( принимающие )
Создают "дырки" , забирая в себя электроны.
Это полупроводники " p "- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда - дырки, а неосновной - электроны.
Такой полупроводник обладает дырочной примесной проводимостью.
Электрические свойства
"p-n" перехода
"p-n" переход (или
электронно-дырочный переход) - область контакта двух полупроводников, где
происходит смена проводимости с электронной на дырочную (или наоборот).
В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой.Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.
В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой.Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.
При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников.
Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.
При запирающем (обратном) направлении
внешнего электрического поля электрический ток через область контакта двух
полупроводников проходить не будет.
Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.
Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.
Запирающий
режим р-n перехода:
Таким образом, электронно-дырочный переход
обладает односторонней
проводимостью.
Комментариев нет:
Отправить комментарий